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TECHNICAL PUBLICATION

DECIPHERING THE LONG-TERM TREND OF ATLANTIC BASIN INTENSE
HURRICANES: MORE ACTIVE VERSUS LESS ACTIVE DURING THE PRESENT EPOCH

1.  INTRODUCTION

Humans have always demonstrated an affinity to be near the water and the population of the United
States is no exception. In particular, Williams1 has shown that the population of counties located along the
Atlantic and Gulf coasts has steadily increased with the passage of time and that, associated with this
burgeoning population growth, an escalating cost of hurricane damage, reaching into the tens of billions of
dollars, has occurred (see also, Gray and Landsea2). In terms of severity, hurricanes are ranked according
to their central pressure, maximum sustained wind speed, and accompanying storm surge using the “Saffir-
Simpson hurricane damage potential scale” (see Simpson3) which ranges from 1–5, where, collectively,
those of category 3–5 are the classes of “intense hurricanes.” These particular hurricanes have central
pressure ≤964 mbar, maximum sustained wind speed ≥50 msec–1, and storm surge ≥2.5 m.

Previous investigations4–12 have described the long-term variation of the frequency of hurricanes,
in particular, in relation to El Niño, wet-dry years of West African rainfall, a perceived active-inactive
pattern of hurricane activity, and an inferred long-term steady decline of hurricane activity spanning the
past five decades (see also, Wilson13 and Landsea et al.14). In this paper, the long-term trend of the annual
frequency of intense hurricanes is reexamined, specifically, on the basis of its 4- and 10-yr moving aver-
ages (moving averages are often used to reduce the effect of random movements on time series data15),
comparing them against those for the annual mean temperature at the Armagh Observatory (Northern
Ireland), first, to determine the possible effect of climatic change on the frequency of intense hurricanes
and, second, to determine the probable direction of its long-term trend during the current epoch. Recall that
the annual mean temperatures at Armagh are based on the use of maximum and minimum thermometers
and extend back to 1844 (see Butler16 and Butler and Johnston17). Recently, Wilson18 showed that the
Armagh temperatures can be used as a proxy for climatic change, since they are found to compare quite
favorably with northern hemispheric and global standards (i.e., those of Parker et al.19 based on global
fields of area-weighted averages of Meteorological Office Historical Sea Surface Temperature). Moreover,
Wilson showed that the current long-term trend of temperature now appears to be upward, being statisti-
cally related to the Sun’s Hale cycle (also called the “double sunspot cycle”). Because the intensity of
hurricanes may be related to changes in climate,20–24 the current warming seems to portend a return to the
more active state of intense hurricane activity, perhaps, like the one that was prevalent prior to the mid
1960’s.
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2.  RESULTS AND DISCUSSION

Figure 1 displays the variation of decadal averages of temperature anomalies (top) from Parker
et al.,19 mean temperatures at Armagh (middle) from Wilson,18 and the frequency of intense hurricanes in
the Atlantic basin from Wilson.13 Noticeable is that all three parameters strongly resemble each other; i.e.,
they have higher values in the 1940’s, followed by a downward trend, a flattening, and the hint of an
upward trend (with hurricane activity, perhaps, slightly lagging those of the temperature anomalies and
means). Because of the strong resemblance to temperature, one infers that shifts in the activity state for
intense hurricanes (from more active to less active and vice versa) may, in fact, be related to changes in
climate. Hence, a strong statistical association between temperature and the frequency of intense hurri-
canes is anticipated, especially, one based on moving averages. (Strictly speaking, the comparative data
sets are limited by the length of the reliable record of intense hurricanes of the Atlantic basin as determined
by routine aircraft reconnaissance (see Neumann et al.25) a timespan of only about 54 yr. Therefore, one
cannot yet rule out the possibility that the inferred association between the annual frequency of intense
hurricanes and temperature may be the result of a mere statistical fluke.)

Figure 2 compares annual mean temperatures at Armagh (top) and the frequency of intense hurri-
canes (bottom), both plotted as the thin lines. Superposed on the yearly values are the 4- and 10-yr moving
averages, plotted, respectively, as the thicker and thickest lines. Identified across the top are the occur-
rences of El Niño (taken from Trenberth26 and supplemented by Quinn et al.27, 28 for the years preceding
1950) and the onsets of the Sun’s Hale cycles 18–19, 20–21, and 22–23, where each pair of numbers refers
to individual sunspot cycles that comprise them. Recall from Wilson18 that the Hale cycle represents the
fundamental cycle of solar magnetic activity and that each has a preferred pairing (specifically,
“even-odd,” in that order).

From figure 2, one finds that the annual frequency of intense hurricanes has ranged from 0 to 7,
with the annual counts ≥4 only for the years of 1948, 1950, 1955, 1958, 1961, 1964, 1995, and 1996. The
timeframe before 1965 has previously been identified as being more active than after 1965 (e.g., Gray5 and
Wilson13); the same, however, cannot, as yet, be said for the present epoch (i.e., has a new active era
already begun?).13, 14

Interestingly, for 41 of the 54 yr displayed (76 percent) the annual frequency of intense hurricanes
has measured 2±1, with only 5 of 54 yr (9 percent) having no occurrences per year and 8 of 54 yr
(15 percent) having an annual frequency ≥4. Of the five zero occurrence years, only the year of 1962 failed
to be an El Niño year. Previously, on the basis of the seasonal number of hurricane days for the years of
1900–1982, Gray4 found that in most El Niño years hurricane activity was diminished in comparison to
non-El Niño years. More recently, Wilson,29 using the detailed listing of El Niño for the interval of 1950–
1997 by Trenberth,24 contrasted El Niño- and non-El Niño-related hurricane seasons and found the annual
frequency of intense hurricanes to be ~2.8 for non-El Niño-related seasons and to be only 1.3 for El Niño-
related seasons, where the observed difference is noted to be statistically important at the 0.2 percent
significance level. Predicting the annual frequency for 1998, however, posed a difficult problem at the
beginning of 1998 because of the continuing (though waning) effects of the strong El Niño of 1997–1998.
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Figure 1.  Decadal averages of mean

temperature anomalies (top),

mean temperature at the Armagh

Observatory (middle), and

frequency of intense hurricanes

(bottom). For the anomalies, the

filled circles refer to the northern

hemisphere, while the filled

triangles refer to the globe.

Had the event been found to extend beyond June 1998,
the season would have had to be classified as “El Niño-
related,” indicating that probably ≤2 (thus far, always
≤3) intense hurricanes would form in the Atlantic
basin. Now, however, because the event appears to be
officially over (Trenberth, private communication), hav-
ing ended prior to the start of the current hurricane sea-
son, the 1998 season must be recognized as “non-
El Niño-related;” consequently, the frequency of intense
hurricanes probably will be ≥2. Complicating this
issue, however, is the observation that the yearly rate
for the year following one in which a frequency of
1 event per year has been recorded has always been ≤3
(true for 13 of 13 yr); for 10 of 13 yr the next year’s rate
was ≤2. Because in 1997 only one intense hurricane was
recorded, it follows that, statistically speaking,
≤3 events probably should be expected during the cur-
rent 1998 season. Thus, it seems quite plausible that an
average hurricane season for 1998 may be the “best
guess” (i.e., 2±1 intense hurricanes). Through Septem-
ber 1998 two intense hurricanes have formed thus far in
the Atlantic basin—“Bonnie” and “Georges,”
a category 3 and 4 hurricane, respectively (generally
speaking, intense hurricanes occur most frequently
after August 1st during the interval of August–
October30–37). On the other hand, because of the strong
likelihood that the 1999 season will also be “non-
El Niño-related” (perhaps, even a “La Niña-related”
season)29 one probably should anticipate an increase in
the number of intense hurricanes for next year’s season
(i.e., possibly ≥4).

On the basis of a Poisson distribution for intense
hurricanes (one having a mean of 2.22 events per year—
from the actual data of 120 events per 54 yr), one easily
computes the probability of having no events per year
as 10.9 percent (or, about 1 chance in 9.2), of having ≥4
events per year as 18.5 percent (or, about 1 chance in
5.4), and of having 2±1 events per year as 70.7 percent
(or, about 1 chance in 1.4). Thus, by always predicting
an “average” number of events for any given year (i.e.,
2±1 events per year), one expects to be correct ~71 per-
cent of the time. (The rate of 2 events per year is also
the mode and median values for the observed distribu-
tion of intense hurricanes.)
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Figure 2.  Annual mean temperature at Armagh Observatory (top) and the annual
frequency of intense hurricanes (bottom). The thin lines are the yearly
values, while the thicker and thickest lines are the 4- and 10-yr moving
averages, respectively. El Niño occurrences and individual Hale cycles
are identified across the top.

From figure 2 it is found that the 4- and 10-yr moving averages of the annual frequency of intense
hurricanes appear to be in fairly steady decline from about 1950 through about 1970, then to be relatively
flat until about 1990, when an upswing seems discernible. Similarly, the 4- and 10-yr moving averages of
the annual mean temperature at Armagh appear to be in decline from the mid 1940’s to the mid 1960’s, then
flat from the mid 1960’s to the mid 1980’s, when an upswing also seems discernible. This coordinated
behavior (with temperature leading) suggests the presence of a strong statistical association between them.
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Figure 3 displays scatter plots of the frequency of intense hurricanes versus temperature using the
4-yr (right) and 10-yr (left) moving averages, both with temperature leading by 6 yr (a lead time that is
associated with the strongest correlations). In each panel the regression line is plotted and the results of the
linear regression analysis are given, as is the probability P of obtaining the observed 2×2 contingency
table, or one more suggestive of a departure from independence, where the table is determined by the
medians, shown as the thin vertical and horizontal lines (i.e., using Fisher’s exact test). For the 4- and
10-yr moving averages, both correlations are inferred to be statistically important at <<0.1 percent signifi-
cance level, suggesting that the leading trend of temperature, indeed, can be used to predict the consequen-
tial trend of the frequency of intense hurricanes.

Figure 3.  Scatter plots of the frequency of intense hurricanes versus mean temperature
at the Armagh Observatory, using 4-yr moving averages (right) and 10-yr moving
averages (left) and employing a lag of 6 yr (temperature leading).
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ŷ
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As an example, for the 10-yr moving averages, the leading trend of temperature (see Fig. 2) is
found to exceed its median of 9.235 °C for the years of 1986–1991, implying that the predicted values of
the frequency of intense hurricanes for the years 1992–1997 will be in the upper-right quadrant of figure 3
(i.e., above its median of 1.85 and being indicative of the more active state). Indeed, the observed 10-yr
moving average of frequency for 1992 is found to exceed the median. For 1987–1991, the leading 10-yr
moving averages of temperature, respectively, equal 9.31, 9.29, 9.27, 9.32, and 9.39 °C, all above its
median; hence, one estimates that for the years of 1993–1997, the 10-yr moving average of frequency,
respectively, will be about 2.37, 2.30, 2.23, 2.41, and 2.66 intense hurricanes per year (all above its median
value). Such values are certainly consistent with the notion that a shift to the more active state probably has
already occurred, and that the yearly frequencies of intense hurricanes during the present epoch (1998 and
later) will usually be above the median, as well (though modulated, of course, by the appearances of
El Niño).

As to why a 6-yr lead time should be incorporated in the correlations (with temperature leading),
the answer is not intuitively obvious. Perhaps, it is related to the average length of time between El Niño
events, being about 3–4 yr in length,28, 29 and/or to the timing and strength of the quasi-biennial oscillation
(a 2–3 yr oscillation) over the Tropics, both of which have previously been shown to have an influence on
Atlantic tropical cyclone activity.4, 6, 37, 38 Perhaps, instead, it bespeaks of a subtle relationship between
climate and the Sun,29, 39 where transitions between states are not driven instantaneously, but require a few
years or so for the change from one state to the other to be manifested. Then again, perhaps, it is simply an
artifact of the analysis, using moving averages based on the rather short interval (54 yr) for which reliable
records exist for determining the annual frequency of intense hurricanes.11, 25 While a physical basis for
the 6-yr lead time remains nebulous, the strength of the inferred correlations between temperature and the
annual frequency of intense hurricanes provides encouragement that one can use them (in combination
with the well-established El Niño-Atlantic hurricane activity relationship4, 29) in formulating a prediction
for intense hurricane activity during the current epoch (at least, until it fails to have predictive ability).

One of the most important factors affecting a successful prediction of the number of intense hurri-
canes during any particular season seems to be whether or not the season is deemed to be “El Niño-related”
or not.4, 29, 37, 38 Thus, when anomalous periods of El Niño activity suddenly occur,28, 40–46 as during the
recent interval of 1990–1995, they can play havoc with trying to accurately predict the level of intense
hurricane activity during a specific year, and, in particular, with trying to observe the transition from one
state to the other. Hence, the recent “expected” transition from the less active state of intense hurricane
activity (in vogue after the mid 1960’s) to the more active state (that was not really apparent until after the
1995–1996 seasons, having levels reminiscent of the active interval prior to the mid 1960’s) essentially
went unnoticed. Obviously, more indepth work modeling the occurrences of these anomalous periods of
El Niño activity must be accomplished. (Previously, Quinn et al.28 have noted several extended periods of
time when the amount and/or strength of El Niño activity and its resulting effects appeared to represent
significant long-term climatic changes. These anomalous periods include 1607–1624, 1701–1728,
1812–1832, 1864–1891, 1925–1932, and now 1990–1995.)
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3.  CONCLUSIONS

In conclusion, on the basis of the most reliable data (1944–1997) of intense hurricanes, this study
has found strong statistical evidence (at <<0.1 percent significance level) linking the annual frequency of
intense hurricanes with climatic change, in particular, as gauged using annual mean temperature at the
Armagh Observatory (Northern Ireland). Hence, by monitoring the trend in temperature (which has been
shown to be strongly related to the Sun’s Hale cycle18), one has at his disposal a tool for assisting in the
accurate prediction of the seasonal frequency of intense hurricanes and for observing the transitional phas-
ing from one state to the other (i.e., from more to less active and vice versa). Furthermore, the upswing in
temperature that began in the mid 1980’s (associated with the start of the current Hale cycle) strongly
suggests that the present epoch of intense hurricane activity, modulated, of course, by the appearances of
El Niño, will likely be reminiscent of the more active era that was prevalent before the mid 1960’s. This
active state, as modulated by El Niño, should continue until near the end of the first decade of the new
millennium, when a return to the less active era should once again be apparent (due to the onset of a new
Hale cycle in about 2006). Because a Poisson distribution (having a mean of about 2.22 events per season)
yields a good match to the observed distribution of annual frequencies of intense hurricanes, one finds that
the “best guess” prediction for any year is about 2±1 intense hurricanes per season, being preferentially
lower (more often ≤2) during El Niño-related seasons and preferentially higher (more often ≥2) during
non-El Niño-related seasons, and matching the observed level of activity about 71 percent (or more) of the
time. Because the 1998 season is now recognized as being “non-El Niño-related” and the 1999 season,
likewise, is expected to be “non-El Niño-related” (perhaps, even, “La Niña-related”), one expects ≥2 in-
tense hurricanes during the seasons, probably 2–3 for 1998 and possibly ≥4 for the 1999 season.
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During the interval of 1944–1997, 120 intense hurricanes (i.e., those of category 3 or higher on the Saffir-Simpson 
hurricane damage potential scale) were observed in the Atlantic basin, having an annual frequency of 0–7 events per 
year, being more active prior to the mid 1960’s than thereafter (hence a possible two-state division: more active versus 
less active), and being preferentially lower during El Niño years as compared to non-El Niño years. Because decadal 
averages of the frequency of intense hurricanes closely resemble those of average temperature anomalies for northern 
hemispheric and global standards and of the average temperature at the Armagh Observatory (Northern Ireland), a 
proxy for climatic change, it is inferred that the long-term trends of the annual frequency of intense hurricanes and 
temperature may be statistically related. Indeed, on the basis of 4- and 10-yr moving averages, one finds that there 
exists strong linear associations between the annual frequency of intense hurricanes in the Atlantic basin and 
temperature (especially, when temperature slightly leads). Because the long-term leading trends of temperature are 
now decidedly upward, beginning about the mid 1980’s, it is inferred that the long-term consequential trends of the 
annual frequency of intense hurricanes should now also be upward, having begun near 1990, suggesting that a return 
to the more active state probably has already occurred. However, because of the anomalous El Niño activity of the 
early to mid 1990’s, the switch from the less active to the more active state essentially went unnoticed (a marked 
increase in the number of intense hurricanes was not observed until the 1995 and 1996 hurricane seasons, following 
the end of the anomalous El Niño activity). Presuming that a return to the more active state has, indeed, occurred, one 
expects the number of seasonal intense hurricanes during the present epoch (continuing through about 2012) to 
usually be higher than average (i.e., ≥2), except during El Niño-related seasons when the number usually will be less 
than average.


